地址:苏州吴中区珠江南路999号
那么生活中我们又如何衡量这些模拟量信号呢?如温度多少?压力多大?风速是多少?对于很多学习过模拟电子技术的同学,这个问题并不难理解。只需要A/D电路就可以实现信号的转化。
模拟量介绍:
模拟信号转换为数字信号需要经过采样、保持、量化与编码四个基本步骤。前两步由采样保持电路完成,后两步由A/D转换电路完成。
采样是对连续信号在时间上进行离散,即按照特定的时间间隔在原始的模拟信号上逐点采集瞬时值。采集到其瞬时值后要在原位置保持一段时间,这样形成的锯齿型波信号提供给后续信号量化。
对采集得到的离散信号进行量化是将特定幅度的信号转化为模数转换器的最小单位的整数倍,这个最小单位也被称为模数转换器的量化单位。每个采样值代表一次采样所获得模拟信号的瞬时幅度。通常量化单位都是2的倍数,量化位数越多,量化误差就越小,量化得到的结果就越好。
对量化后的离散信号进行编码是模拟信号转换为数字信号的最后环节,常见的采用并行比较A/D转换电路,逐次逼近式A/D转换电路,双积分式A/D转换电路实现,通过借助一定的电路,可以将量化后的离散信号转换为对应的数字信号。
最常见的模拟量是12位,精度为2~12,当然也有高精度的如16位的。
模拟量的优点:
模拟信号的主要优点是其精确的分辨率,与数字信号相比,模拟信号的信息密度更高。它的信号波形随着信息的变化而变化,其特点是幅度连续(连续的含义是在某一取值范围内可以取无限多个数值),由于不存在量化误差,它可以对自然界物理量的真实值进行尽可能逼近的描述。
模拟信号的另一个优点是,模拟信号处理比数字信号处理更简单。模拟信号的处理可以直接通过模拟电路组件(例如运算放大器等)实现。
模拟量的缺点:
抗干扰能力差,信号在沿线路的传输过程中会受到外界的通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多。例如翻录录音带、录像带,每翻录一次,声音、图像质量就差一次,原因就在于此。
可以使用接地屏蔽、线路良好接触、使用同轴电缆或屏蔽双绞线,甚至是光纤,可以在一定程度上缓解这些负面效应。
模拟信号的保密性也差,尤其是微波通信和有线通信,容易被窃听。只要收到模拟信号,就很容易得到通信的内容。
模拟信号的数字化实现:
在现实的工业现场,人们常使用各种传感器,变送器实现模拟量信号的采集转换等功能。在工业现场常见的这类仪器仪表都有什么呢?
压力变送器:是一种将压力转换成气动信号或电动信号进行控制和远传的设备,常见的是电动信号的,它能将测压元件传感器感受到的气体、液体等物理压力参数转变成标准的电信号(如4~20mA电流信号,0-5V/0-10V电压信号),以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。
那么这些变送器/传感器将模拟信号采集后,人们如何获取到可以人类识别的信号呢。大部分这类设备带有显示单元,可以通过数字显示具体的数据,如压力变送器可以显示具体的压力值是多少kPa,温度变送器显示多少摄氏度,液位变送器显示多少厘米/米高度等。
而在工业现场人们需要实时监控这些数值的变化,以控制其他设备的运行或者报警,防止意外的发生。目前大部分设备处于经济性考虑,大部分都是提供模拟量信号输出,我们可以通过其他二次数显仪表,PLC(可编程控制器),DCS等进行数据的采集与显示。
通常这些仪表输出的电流或者电压信号,工业现场常用标准是4~20mA电流信号和0-5V/0-10V电压信号。因大部分信号需要远传,所以4~20mA是我们常用的信号类型。而0-5V/0-10V电压信号主要作为接收。
而对于电流信号/电压信号,在接线方式上还分为二线制,三线制,四线制,不同接线方式具有不同的作用。